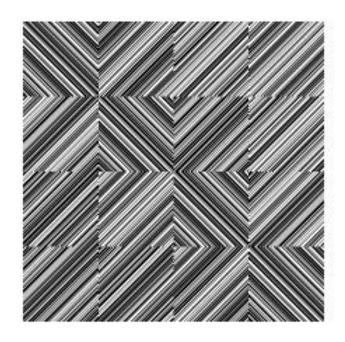
An Introduction to Hadamard Matrices, their Constructions, and Generalizations



Charles Katerba Arizona Space Grant Symposium April 17, 2010

What is a Hadamard Matrix?

In the 1890's, *J. Hadamard* asked this question:

"What $n \times n$ matrices with entries from the set $\{\pm 1\}$ have maximal determinants?"

An $n \times n$ matrix H with the above properties is now called a *Hadamard matrix*. It follows that an $n \times n$ HM has the following characteristics:

- *H* must satisfy $H \cdot H^T = n \cdot I_n$
- the rows (and columns) must be pairwise orthogonal
- *n* must be a multiple of 4 (or n = 1 or 2)
- rows and columns are *pairwise balanced*

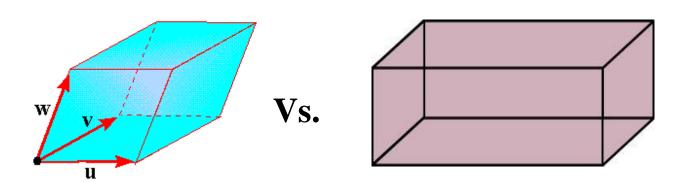
Where Do They Come From?

The Hadamard Inequality: Let *M* be a square matrix of order *n*. Then

 $|\det(M)| \le n^{n/2}$

This bound is achieved when $M \cdot M^T = n \cdot I_n$ $(\det(M))^2 = \det(M) \cdot \det(M) = \det(M) \cdot \det(M^T)$ $= \det(M \cdot M^T) = \det(n \cdot I_n) = n^n$ $\Rightarrow \det(M) = n^{n/2}$

Orthogonality:



Example: Here, *H* is a symmetric matrix, but only to make the computations easy.

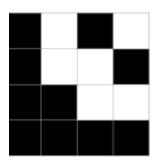
Applications of Hadamard Matrices

- Finding Errors in Coding Theory
- Cryptography
- Measuring variability in stratified sampling
- Buffering in spectroscopic analysis
- Signal modulation
- Separation of electronic transmissions
- Improving signal correlation
- Enhancing 3-D optical memory storage
- Quantum Mechanics

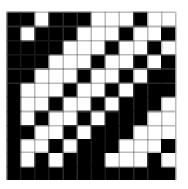
So knowing when a *HM* exists, and of what orders they exist, is important.

Classic Constructions

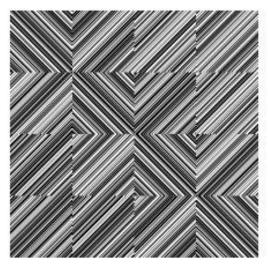
• Sylvester Construction (matrix tensor products)



• Payley Construction (quadratic group characters)



• Williamson Construction (Plug-in technique)



Hadamard Matrix Generalizations

Butson Hadamard Matrices: Let *H* be an $n \times n$ matrix whose entries are complex m^{th} roots of unity instead of $\{\pm 1\}$.

Unimodular HMs: Let *H* be an $n \times n$ matrix with entries come the complex unit circle in place of complex m^{th} roots of unity.

Generalized HMs: Let *H* be an $n \times n$ matrix whose entries come from any finite group instead of the complex unit circle.

Higher Dimensional HMs: Let *H* be an $n \times n \times ... \times n$ array with entries from the set $\{\pm 1\}$.

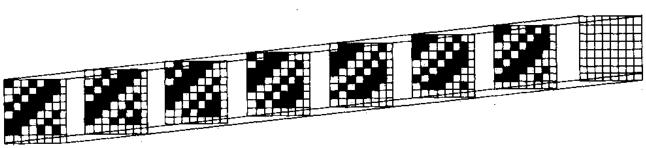


Fig. 2. Paley cube of dimension 3, **B** Minus one. \Box Plus one.

Circulant Hadamard Conjecture

Definition: A *circulant matrix* is defined by its first row. For each subsequent row, take each entry from the first row and move it down one row and to the right one entry.

Example:

$$\begin{bmatrix} 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 \end{bmatrix}$$
, which is Hadamard.

Circulant Hadamard Conjecture: There are no circulant Hadamard matrices of order > 4.

John's Work: The only possible orders of circulant Hadamard matrices are of the form

$$4u^2$$
, where *u* is odd.

Acknowledgements

- The NASA Space Grant Program at NAU
- The NAU Department of Mathematics and Statistics
- The Office of the Vice President for Research and Development at NAU
- Jeff Rushall
- Dr. Jennifer Seberry, Hadamard Queen

